EL LENGUAJE DE LA HERENCIA

TEMA 1 :DE LOS FACTORES HEREDITARIOS AL ADN

En el cine y la televisión se habla a menudo de los mutantes y las mutaciones, de la ingeniería genética y del ADN; también se oye decir frecuentemente que un bebe se parece mucho a su madre o a su padre, o que cierta enfermedad es de familia. Todos estos fenómenos están relacionados con el modo en que se heredan los rasgos biológicos, es decir, como se transmiten de los padres a los hijos.

lenguaje de la herencia

LAS MOLÉCULAS DE LA HERENCIA

JOHAN FRIEDRICH MEISCHNER

EN EL SIGLO xix, comprobó que los núcleos celulares contenían una sustancia de caracter acido que posteriormente fue llamada ácido nucleico.

Estudios posteriores permitieron conocer con detalles el ADN y el ARN

 
ESTRUCTURA DE LOS ACIDOS NUCLEICOS

EL ADN

EL ARNA


JAMEN WATSON Y    FRANCIS CRIEK 1953, PROPONEN EL MODELO ESTRUCTURAL DEL ADN

DUPLICACIÓN DEL ADN

SINTESIS DE PROTEINAS: LA EXPRESION DE LOS GENES

Para que este proceso se realice la celula necesita de:

Una molecula intermediaria (ARN)

Un sistema de traducción:ARNm, ARNt, ARNr

Este proceso requiere de cuatro etapas:

1.-TRANSCRIPCIÓN

2.-PROCESAMIENTO O EDICIÓN

Cambio de INTRONES por EXONES

3.-TRADUCCIÓN


4.- MADURACIÓN

Sintesis de proteinas (Animacion 3D) por raulespert

CAMBIOS EN EL MATERIAL HEREDITARIO: LAS MUTACIONES

La definición que en su obra de 1901 “La teoría de la mutación” Hugo de Vries dio de la mutación (del latín mutare = cambiar) era la de cualquier cambio heredable en el material hereditario que no se puede explicar mediante segregación o recombinación. Más tarde se descubrió que lo que De Vries llamó mutación en realidad eran más bien recombinaciones entre genes.

La definición de mutación a partir del conocimiento de que el material hereditario es el ADN y de la propuesta de la doble hélice para explicar la estructura del material hereditario (Watson y Crick,1953), sería que una mutación es cualquier cambio en la secuencia de nucleótidos del ADN. Cuando dicha mutación afecta a un sólo gen, se denomina mutación génica. Cuando es la estructura de uno o varios cromosomas lo que se ve afectado, mutación cromosómica. Y cuando una o varias mutaciones provocan alteraciones en todo el genoma se denominan, mutaciones genómicas.

AGENTES MUTAGENICOS :  Fisicos y Químicos

AGENTES GENÉTICOS

CONSECUENCIAS DE LAS MUTACIONES

TEMA 2: APLICACIONES DE LA GENÉTICA MOLECULAR:

LA INGENIERÍA GENÉTICA:

Hablar de la clonación de la oveja Dolly y de la manipulación del ADN para provecho del ser humano, puede traer consecuencias positivas y negativas para estas practicas para la humanidad y para el ambiente.

QUE ES LA INGENIERÍA GENETICA?

La ingeniería genética, es la tecnología del control y transferencia de ADN de un organismo a otro, lo que posibilita la creación de nuevas especies, la corrección de defectos genéticos y la fabricación de numerosos compuestos.

Experimento de Ingeniería Genética

Un experimento de Ingeniería Genética podría ser:

  1. Se corta por separado el ADN del organismo a estudiar y el ADN del vector con la misma restrictasa, de modo que se generan extremos compatibles entre sí (mutuamente cohesivos).
  2. Se juntan ambos ADN y se les añade ADN-ligasa: de esta forma, las uniones entre ADN pasajero y ADN del vector se sellan mediante un enlace covalente, generándose moléculas híbridas (quiméricas o recombinantes).
  3. Ahora hay que introducir las moléculas generadas en los organismos huésped. En el caso de bacterias se recurre a una técnica sencilla denominada transformación, que permite la entrada del ADN a través de las envueltas del microorganismo.
  4. Finalmente, hay que localizar las bacterias que han captado el ADN que ha entrado. A menudo este es el paso más laborioso, pero el hecho de que el vector posea uno o varios genes de resistencia favorece al menos la eliminación de las bacterias que no han recibido ADN del vector: basta añadir al medio de cultivo el antibiótico para el que el vector confiere resistencia. Para localizar los transformantes recombinantes, muchos vectores incorporan un gen marcador que produce alguna sustancia coloreada. Si insertamos el gen a aislar dentro de ese marcador, lo rompemos, por lo que las colonias bacterianas no producirán la sustancia coloreada, sino que permanecen incoloras o blancas.
  5. El resultado del experimento es la obtención de al menos una colonia (clon) de bacterias que portan la combinación buscada de vector con el inserto de ADN pasajero. Se dice entonces que hemos clonado dicho ADN
  6. Biotecnología genética


    En la década de 1970 se abrieron nuevas perspectivas en el campo de las biotecnologías gracias a la elaboración de nuevas técnicas que permiten llegar directamente al material que está en el origen de todas las características y procesos vitales, es decir, el ADN. Este conjunto de técnicas moleculares de manipulación genética recibe el nombre de ingeniería genética.

    Su objetivo es la manipulación in Vitro del ADN, la introducción de este ADN así modificado en células vivas y la incorporación del mismo como parte del material hereditario de dichas células. De este modo, ADN de diversas procedencias, por ejemplo, la fracción de ADN humano regula la síntesis de insulina, puede introducirse en bacterias de manera que pasa a formar parte de su genoma y lograr así que la bacteria adquiera la capacidad de elaborar insulina.

    Terapia genética


    La terapia genética consiste en sustituir o añadir, según el caso, una copia normal de la región defectuosa del ADN para poder solucionar y restablecer la función alterada, evitando el desarrollo de enfermedades de origen genético, como por ejemplo la facultad defensiva ante las enfermedades infecciosas. Las enfermedades con las que se ha empezado a trabajar son, entre otras, la deficiencia de la enzima ADA (adenosina desaminasa), conocida como la de los niños burbuja y la DMD o distrofia muscular de Duchenne.

    La posibilidad de curar las enfermedades genéticas con un tratamiento específico justifica lo esfuerzos que se están realizando en este sentido.

    Implicaciones éticas

    La ingeniería tiene aplicaciones en campos muy diversos; dos de los más importantes son la medicina y la creación de nuevas especies o mejora de las existentes. El progreso en estos ámbitos puede aportar resultados capaces de aliviar algunos problemas de gran importancia, pero no se debe olvidar que la explotación comercial de las tecnologías requeridas sólo está al alcance de unas pocas empresas multinacionales. Como era de esperar, la tradicional dependencia económica de los países subdesarrollados tiene en la ingeniería genética un nuevo elemento de desequilibrio. En otro orden de cosas, la ingeniería genética puede plantear graves problemas éticos. Hay opiniones muy diversas sobre dónde han de situarse los límites de manipulación del material que está en la base de todos los procesos vitales.

    Al inicio de los experimentos del ADN recombinante, varios investigadores mostraron su preocupación por los riesgo que se pueden realizar con dichas técnicas, en varios países se crearon comités para discutir el uso y la aplicación de técnicas de ingeniería genética. Lamentablemente está limitada por fuerzas políticas y por la presión de las empresas involucradas en el desarrollo y la comercialización de los productos biotecnologías.1

    Es necesario la participación de cada ciudadano sobre la información para tener un criterio respecto al tema ya que esto no puede ser resuelto solo por expertos, quien tiene la decisión final es la sociedad en decidir qué se debe hacer.2

    Ingeniería genética en seres vivos

    Ingeniería genética en bacterias

    Son los seres vivos más utilizados en Ingeniería Genética. La más utilizada es la Escherichia coli. Se usa prácticamente en todos los procesos de I.G.

    Ingeniería genética en levaduras y hongos

    Son junto con las bacterias los sistemas más utilizados. El Saccharomyces cerevisiae fue el primer sistema eucariota secuenciado completamente. Otra levadura importante es P. pastoris, utilizada para conseguir proinsulina en cultivo discontinuo y quitinasa en cultivo continuo. En el campo de los hongos destaca por su labor médica el Penicillium.

    Ingeniería Genética en animales

    La manipulación genética de los animales persigue múltiples objetivos: aumentar el rendimiento del ganado, producir animales con enfermedades humanas para la investigación, elaborar fármacos, etc.

    Ingeniería Genética en plantas

    Actualmente se han desarrollado plantas transgénicas de más de cuarenta especies. Mediante ingeniería genética se han conseguido plantas resistentes a enfermedades producidas por virus, bacterias o insectos. Estas plantas son capaces de producir antibióticos, toxinas y otras sustancias que atacan a los microorganismos. También se han conseguido otro tipo de mejoras, como la producción de distintas sustancias en los alimentos que aumentan su calidad nutricional, mejorar las cualidades organolépticas de un producto o que ciertas plantas sean más resistentes a determinados factores ambientales, como el frío.

    Las técnicas de ingeniería genética también permiten el desarrollo de plantas que den frutos de maduración muy lenta. Así, es posible recoger tomates maduros de la tomatera y que lleguen al consumidor conservando intactos su sabor, olor, color y textura. La mejora de la calidad de las semillas es también un objetivo.

    Las aplicaciones farmacéuticas son otro gran punto de interés. La biotecnología permite desarrollar plantas transgénicas que producen sustancias de interés farmacológico, como anticuerpos, ciertas proteínas y hormonas, como la hormona del crecimiento.

    Aplicaciones de la Ingeniería Genética en medicina e industria farmacéutica

    Obtención de proteínas de mamíferos

    Una serie de hormonas como la insulina, la hormona del crecimiento, factores de coagulación, etc., tienen un interés médico y comercial muy grande. Antes, la obtención de estas proteínas se realizaba mediante su extracción directa a partir de tejidos o fluidos corporales. En la actualidad, gracias a la tecnología del ADN recombinante, se clonan los genes de ciertas proteínas humanas en microorganismos adecuados para su fabricación comercial. Un ejemplo típico es la producción de insulina que se obtiene a partir de la levadura Sacharomyces cerevisae, en la cual se clona el gen de la insulina en los humanos.

    Obtención de vacunas recombinantes

    El sistema tradicional de obtención de vacunas a partir de microorganismos patógenos inactivos, puede comportar un riesgo potencial. Muchas vacunas, como la de la hepatitis B, se obtienen actualmente por ingeniería genética. Como la mayoría de los factores antigénicos son proteínas lo que se hace es clonar el gen de la proteína correspondiente.

    Diagnóstico de enfermedades de origen genético

    Conociendo la secuencia de nucleótidos de un gen responsable de una cierta anomalía, se puede diagnosticar si este gen anómalo está presente en un determinado individuo.

    Obtención de anticuerpos monoclonales

    Este proceso abre las puertas para luchar contra enfermedades como el cáncer y diagnosticarlo incluso antes de que aparezcan los primeros síntomas.

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

w

Conectando a %s